Free PDF Download of CBSE Maths Multiple Choice Questions for Class 12 with Answers Chapter 3 Matrices. Maths MCQs for Class 12 Chapter Wise with Answers PDF Download was Prepared Based on Latest Exam Pattern. Students can solve NCERT Class 12 Maths Matrices MCQs Pdf with Answers to know their preparation level. https://www.cbselabs.com/maths-mcqs-for-class-12-with-answers-chapter-3/

## Matrices Class 12 Maths MCQs Pdf

Matrices Class 12 MCQ Questions Question 1.
If A and B are symmetric matrices of the same order, then
(a) AB is a symmetric matrix
(b) A – Bis askew-symmetric matrix
(c) AB + BA is a symmetric matrix
(d) AB – BA is a symmetric matrix
(c) AB + BA is a symmetric matrix

Matrices MCQ Class 12 Question 2.
If $$A=\left[\begin{array}{cc} 3 & x-1 \\ 2 x+3 & x+2 \end{array}\right]$$ is a symmetric matrix, then x =
(a) 4
(b) 3
(c) -4
(d) -3
(c) -4

Matrix MCQ Class 12 Question 3.
If A is a square matrix, then A – A’ is a
(a) diagonal matrix
(b) skew-symmetric matrix
(c) symmetric matrix
(d) none of these
(b) skew-symmetric matrix

Matrices Class 12 MCQ Question 4.
If A is any square matrix, then which of the following is skew-symmetric?
(a) A + AT
(b) A – AT
(c) AAT
(d) ATA
(b) A – AT

Matrix MCQ Questions Class 12 Question 5. (a) α = a2 + b2, β = ab
(b) α = a2 + b2, β = 2ab
(c) α = a2 + b2, β = a2 – b2
(d) α = 2ab, β = a2 + b2
(b) α = a2 + b2, β = 2ab

MCQ On Matrices Class 12 Question 6.
If A = $$\left[\begin{array}{lll} 1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]$$ and B = $$\left[\begin{array}{ccc} 1 & -2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]$$ and AB = I3, then x + y equals
(a) 0
(b) -1
(c) 2
(d) None of these
(a) 0

If A = $$\left[\begin{array}{ll} 1 & 2 \\ 2 & 1 \end{array}\right]$$ and f(x) = (1 + x) (1 – x), then f(a) is (a) $$-4\left[\begin{array}{ll} 1 & 1 \\ 1 & 1 \end{array}\right]$$

Matrix Class 12 MCQ Question 8.
If A = $$\left[\begin{array}{ll} 1 & 3 \\ 3 & 4 \end{array}\right]$$ and A2 – KA – 5I = 0, then K =
(a) 5
(b) 3
(c) 7
(d) None of these
(a) 5

MCQ Of Matrices Class 12 Question 9. (b) $$\left[\begin{array}{cc} -3 & 10 \\ -2 & 7 \end{array}\right]$$

Matrices MCQ Questions Class 12 Question 10.
If matrix A = $$\left[\begin{array}{lll} a & b & c \\ b & c & a \\ c & a & b \end{array}\right]$$ where a, b, c are real positivenumbers, abc = 1 and ATA = I, then the value of a3 + b3 + c3 is
(a) 1
(b) 2
(c) 3
(d) 4
(d) 4

Matrices MCQ Class 12 Question 11. (c) $$\frac{1}{11}\left[\begin{array}{ccc} -1 & -3 & 5 \\ -2 & 5 & -1 \\ 7 & -1 & -2 \end{array}\right]$$

Matrices MCQ With Answers Pdf Class 12 Question 12. (a) $$\frac{-1}{11}, \frac{2}{11}$$

MCQ On Matrices Class 12 Question 13.
Using elementary transformation, find the inverse of matrix $$\left[\begin{array}{ccc} -1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{array}\right]$$ (a) $$\left[\begin{array}{ccc} 1 & -1 & 1 \\ -8 & 7 & -5 \\ 5 & -4 & 3 \end{array}\right]$$

Class 12 Matrices MCQ Question 14.
Find the inverse of the matrix $$A=\left[\begin{array}{ll} 1 & 3 \\ 2 & 7 \end{array}\right]$$, using elementary row transformation. (a) $$\left[\begin{array}{cc} 7 & -3 \\ -2 & 1 \end{array}\right]$$

Class 12 Maths Chapter 3 MCQ Question 15. (d) $$\frac{1}{2}$$

Matrix MCQ Class 12 Question 16.
Find the values of x, y, z respectively if the matrix $$A=\left[\begin{array}{ccc} 0 & 2 y & z \\ x & y & -z \\ x & -y & z \end{array}\right]$$ satisfy the equation ATA = I3.
(a) $$\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{3}}$$
(b) $$\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{6}}, \frac{-1}{\sqrt{3}}$$
(c) Both (a) and (b)
(d) None of these
(c) Both (a) and (b)

MCQ On Matrices Class 12 Pdf Question 17.
If $$A=\left[\begin{array}{cc} \cos x & -\sin x \\ \sin x & \cos x \end{array}\right]$$, find AAT.
(a) Zero Matrix
(b) I2
(c) $$\left[\begin{array}{ll} 1 & 1 \\ 1 & 1 \end{array}\right]$$
(d) None of these
(b) I2

Matrix MCQ Questions And Answers Class 12 Question 18.
If $$A=\left[\begin{array}{ccc} 0 & -1 & 2 \\ 1 & 0 & 3 \\ -2 & -3 & 0 \end{array}\right]$$, then A + 2AT equals
(a) A
(b) -AT
(c) AT
(d) 2A2
(c) AT

For any square matrix A, AAT is a
(a) unit matrix
(b) symmetric matrix
(c) skew-symmetric matrix
(d) diagonal matrix
(b) symmetric matrix

Question 20.
If A = $$\left[\begin{array}{lll} 6 & 8 & 5 \\ 4 & 2 & 3 \\ 9 & 7 & 1 \end{array}\right]$$ is the sum of a symmetric matrix B and skew-symmetric matrix C, then B is (a) $$A=\left[\begin{array}{lll} 6 & 6 & 7 \\ 6 & 2 & 5 \\ 7 & 5 & 1 \end{array}\right]$$

Question 21.
If the matrix A = $$\left[\begin{array}{ccc} 5 & 2 & x \\ y & 2 & -3 \\ 4 & t & -7 \end{array}\right]$$ is a symmetric matrix, then find the value of x, y and t respectively.
(a) 4, 2, 3
(b) 4, 2, -3
(c) 4, 2, -7
(d) 2, 4, -7
(b) 4, 2, -3

Question 22.
If a matrix A is both symmetric and skew-symmetric, then
(a) A is a diagonal matrix
(b) A is a zero matrix
(c) A is a scalar matrix
(d) A is a square matrix
(b) A is a zero matrix

Question 23.
The matrix $$\left[\begin{array}{ccc} 0 & 5 & -7 \\ -5 & 0 & 11 \\ 7 & -11 & 0 \end{array}\right]$$ is
(a) a skew-symmetric matrix
(b) a symmetric matrix
(c) a diagonal matrix
(d) an upper triangular matrix
(a) a skew-symmetric matrix

Question 24. (a) $$\frac{1}{13}\left[\begin{array}{ccc} -1 & 3 & -3 \\ 5 & -2 & 15 \\ 5 & -2 & 2 \end{array}\right]$$

Question 25. (c) $$\left[\begin{array}{ccc} 0 & -1 & 1 \\ -4 & 3 & -2 \\ -3 & 3 & -2 \end{array}\right]$$

Question 26. (b) $$\left[\begin{array}{ccc} 0 & -1 / 3 & -1 / 2 \\ 1 / 3 & 0 & -1 / 5 \\ 1 / 2 & 1 / 5 & 0 \\ 3 / 5 & 1 / 3 & 1 / 7 \end{array}\right]$$

Question 27.
The matrix A = $$\left[\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right]$$ is a
(a) unit matrix
(c) symmetric matrix
(b) diagonal matrix
(d) skew-symmetric matrix
(d) skew-symmetric matrix

Question 28.
If $$\left[\begin{array}{cc} x+y & 2 x+z \\ x-y & 2 z+w \end{array}\right]=\left[\begin{array}{cc} 4 & 7 \\ 0 & 10 \end{array}\right]$$, then the values of x, y, z and w respectively are
(a) 2, 2, 3, 4
(b) 2, 3, 1, 2
(c) 3, 3, 0, 1
(d) None of these
(a) 2, 2, 3, 4

Question 29. then find the values of a, b, c, x, y, and z respectively.
(a) -2, -7, -1, -3, -5, 2
(b) 2, 7, 1, 3, 5, -2
(c) 1, 3, 4, 2, 8, 9
(d) -1, 3, -2, -7, 4, 5
(a) -2, -7, -1, -3, -5, 2

Question 30.
The order of the single matrix obtained from (a) 2 × 3
(b) 2 × 2
(c) 3 × 2
(d) 3 × 3
(d) 3 × 3

Question 31.
$$A=\left[\begin{array}{ll} 1 & -1 \\ 2 & -1 \end{array}\right], B=\left[\begin{array}{ll} x & 1 \\ y & -1 \end{array}\right]$$ and (A + B)2 = A2 + B2, then x + y =
(a) 2
(b) 3
(c) 4
(d) 5
(d) 5

Question 32.
If A2 – A + I = O, then the inverse of A is
(a) I – A
(b) A – I
(c) A
(d) A + I
(a) I – A

Question 33.
Total number of possible matrices of order 3 × 3 with each entry 2 or 0 is
(a) 9
(b) 27
(c) 81
(d) 512
(d) 512

Question 34.
The matrix $$\left[\begin{array}{ccc} 0 & -5 & 8 \\ 5 & 0 & 12 \\ -8 & -12 & 0 \end{array}\right]$$ is a
(a) diagonal matrix
(b) symmetric matrix
(c) skew symmetric matrix
(d) scalar matrix
(c) skew symmetric matrix

Question 35.
If A is a matrix of order m × n and B is a matrix such that AB’ and B’A are both defined, then the order of matrix B is
(a) m × m
(b) n × n
(c) n × m
(d) m × n
(d) m × n

Question 36.
If A and B are matrices of the same order, then (AB’ – BA’) is a
(a) skew-symmetric matrix
(b) null matrix
(c) symmetric matrix
(d) unit matrix
(a) skew-symmetric matrix

Question 37.
If A is a square matrix such that A2 = I, then (A – I)3 + (A + I)3 – 7A is equal to
(a) A
(b) I – A
(c) I + A
(d) 3A
(a) A

Question 38.
If A = $$\left[\begin{array}{lll} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{array}\right]$$, then A4 – 24 (A – I) =
(a) 5I + A
(b) 5I – A
(c) 5I
(d) 6I
(b) 5I – A

Question 39.
If A is an m × n matrix such that AB and BA are both defined, then B is a
(a) m × n matrix
(b) n × m matrix
(c) n × n matrix
(d) m × n matrix
(b) n × m matrix

Question 40.
If $$\left[\begin{array}{ll} 1 & 2 \\ 3 & 4 \end{array}\right]$$, then A2 – 5A is equal to
(a) 2I
(b) 3I
(c) -2I
(d) null matrix 